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Regional or local climate change modeling studies currently require
starting with a global climate model, then downscaling to the
region of interest. How should global models be chosen for such
studies, and what effect do such choices have? This question is
addressed in the context of a regional climate detection and
attribution (D&A) study of January-February-March (JFM) temper-
ature over the western U.S. Models are often selected for a
regional D&A analysis based on the quality of the simulated
regional climate. Accordingly, 42 performance metrics based on
seasonal temperature and precipitation, the El Nino/Southern
Oscillation (ENSO), and the Pacific Decadal Oscillation are con-
structed and applied to 21 global models. However, no strong
relationship is found between the score of the models on the
metrics and results of the D&A analysis. Instead, the importance of
having ensembles of runs with enough realizations to reduce the
effects of natural internal climate variability is emphasized. Also,
the superiority of the multimodel ensemble average (MM) to any
1 individual model, already found in global studies examining the
mean climate, is true in this regional study that includes measures
of variability as well. Evidence is shown that this superiority is
largely caused by the cancellation of offsetting errors in the
individual global models. Results with both the MM and models
picked randomly confirm the original D&A results of anthropo-
genically forced JFM temperature changes in the western U.S.
Future projections of temperature do not depend on model per-
formance until the 2080s, after which the better performing
models show warmer temperatures.

anthropogenic forcing � detection and attribution � regional modeling

Work for the Intergovernmental Panel on Climate Change
(IPCC) fourth assessment report (AR4) has produced

global climate model data from groups around the world. These
data have been collected in the CMIP3 dataset (1), which is
archived at the Program for Climate Model Diagnosis and
Intercomparison at Lawrence Livermore National Laboratory
(LLNL). The CMIP3 data are increasingly being downscaled and
used to address regional and local issues in water management,
agriculture, wildfire mitigation, and ecosystem change. A prob-
lem such studies face is how to select the global models to use
in the regional studies (2–4). What effect does picking different
global models have on the regional climate study results? If
different global models give different downscaled results, what
strategy should be used for selecting the global models? Are
there overall strategies that can be used to guide the choice of
models? As more researchers begin using climate models for
regional applications, these questions become ever more
important.

The present paper and accompanying work investigate these
questions. Here we address the regional problem, using as a
demonstration case a recent detection and attribution (D&A)
study of changes in the hydrological cycle of the western United
States (B08 hereafter) (5–8). The insights we have obtained
should relate not only to B08, but more generally to regional
climate change studies that rely on information from multiple
models.

A common approach in such studies is simply to average over
all models with available data (9). This approach is justified by
global scale results, generally examining only the mean climate,
that show the ‘‘average model’’ is often the best (10–14). This
procedure weights models that do a poor job simulating the
region of interest equally with those that do a good job. It is
natural to wonder whether there is a better strategy and whether
this result holds for model variability as well.

An increasingly popular approach is to generate metrics of
model skill, then prequalify models based on their ability to
simulate climate in the region or variable of interest (2–5, 15).
However, it is worth examining the underlying assumptions of
this strategy. Do the models selected in this fashion provide an
estimate of climate change over the historical record that is
closer to observations than models rejected on this basis?

Models. We use global model January-February-March (JFM)
minimum near-surface temperature (‘‘tasmin’’) over the western
U.S. as a surrogate for the multivariate analysis of B08. This
variable was used directly by B08 in addition to snow water
equivalent and runoff, which are more influenced by small-scale
topography. We also reuse the internal climate variability (noise)
estimates from B08, obtained from 1,600 years of simulation with
2 different models. B08 and its companion works found that
these models provided a realistic noise estimate for use in D&A
studies. Our focus here is on the climate change ‘‘signal,’’ not the
internal variability ‘‘noise.’’ The reasoning is that a model with
an unrealistic noise level can be identified by comparing with the
observations. However, for a D&A study, it is not permissible to
qualify a model for use based on how well its climate change
signal agrees with observed trends. This is because retaining only
models whose climate change signal agreed with observations
would make it impossible to find that the observed and model-
estimated signals disagree, in essence predetermining the study’s
conclusions.

Data from 21 global models, many with multiple realizations
(see supporting information (SI) Text and Table S1), forced by
20th century changes in anthropogenic and natural factors were
obtained from the LLNL CMIP3 archive (http://www-
pcmdi.llnl.gov/ipcc/about_ipcc.php). We adopt the CMIP3 ter-
minology: near-surface air temperature is ‘‘tas,’’ daily minimum
tas is ‘‘tasmin,’’ surface temperature is ‘‘ts,’’ and precipitation is
‘‘pr’’. The atmospheric resolution for the models varies (12).
Many models in the archive have less tasmin than ts and pr data;
only 13 have more than 1 realization with tasmin. The period
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analyzed is 1960–1999, because most models have no more than
40 years of tasmin data in the archive. To facilitate comparison,
all model fields and the observations were put onto a common
1°�1° grid over the western U.S. using bicubic interpolation (Fig.
S1).

We compare model temperatures and precipitation with a
daily observed dataset gridded at 1/8° longitude by latitude
resolution across the western U.S. (16). This dataset is based on
the National Weather Service co-operative (co-op) network of
stations, adjusted for changes in instrumentation, location, or the
surrounding environment.

For sea surface temperature, we combined observed data over
the period 1945–1982 (17) with National Centers for Environ-
mental Prediction (NCEP) optimally interpolated data over the
period 1983–2007 (ftp://ftp.emc.ncep.noaa.gov/cmb/sst/oisst_v2)
(18).

Statistical Methods. We evaluate the models with a broad spec-
trum of metrics based on temperature and precipitation, which
are key to climate impacts over most of the world. More details
of the metrics are given in SI Text, with a brief summary here.

All of our metrics are based on the spatial mean squared error
(MSE), which can be decomposed as (19, 20):

MSE � �m� � o� �2 � sm
2 � so

2 � 2sm so rm,o [1]

where m(x) is the model variable of interest, o(x) are the observa-
tions, overbars indicate spatial averages, rm,o is the product moment
spatial correlation coefficient between the model and observations,
and sm and so are the sample spatial standard deviation of the model
and observations, respectively. When comparing variables with
different units, we transform the MSE to a (dimensionless) spatial
skill score (SS):

SS � 1 �
MSE�m , o�

MSE�o� , o�
. [2]

A model field identical to observations has a skill score of 1,
whereas a model that predicts the correct mean in a limited
region, but only as a completely featureless, uniform pattern,
yields a skill score of 0.

Let em � (m� � o�) be the ‘‘mean error,’’ and ep � (sm
2 � so

2 �
2smso�m,o)1/2 be the ‘‘pattern error’’; then the root mean squared
error (RMSE) � (em

2 � ep
2)1/2. This quantity lends itself to a

geometric interpretation, where the mean and pattern errors can
be plotted on orthogonal axes and the RMSE is the distance to
the origin (cf. 20). Similarly, SS can be decomposed into the
mean error, the pattern correlation (squared) between the
model and observations, and the ‘‘conditional bias,’’ which
describes a model tendency to over- or under-predict excursions
(19). These decompositions are used in the next section.

Temporal variability is evaluated by using spatial patterns of
temporal behavior. For example, computing the standard devi-
ation at each point yields a spatial pattern of standard deviations;
we then compare this with the same field estimated from
observations. When ensemble averaging, either for one or across
multiple models, we average the variability measures from each
realization. We do not first ensemble average the variable, then
compute its variability, which would underestimate the true
variability.

We use 42 metrics to characterize each model. We begin with
4 seasonal December-January-February (DJF), March-April-
May (MAM), June-July-August (JJA), and September-October-
November (SON) averages of 2 variables (tas and pr) in 4
aspects: The seasonal mean and the temporal standard deviation
of the seasonal data averaged into 1-, 5-, and 10-year blocks. This
process gives 32 metrics. We also include the amplitude and

phase of the annual harmonic for each variable, adding another
4 metrics.

The El Nino/Southern Oscillation (ENSO) and North Pacific
Decadal Oscillation (NPO or PDO) (21) have a strong effect on
the climate of our region. For each mode, we construct one
metric describing the climate mode’s sea surface temperature
pattern in the region where it is defined and additional metrics
describing the teleconnected effects of the climate mode in
western U.S. tas and pr. This process yields another 6 metrics, for
a total of 42. A method for dealing with redundant information
in the metrics is given in SI Text, section 3.

All of the models have trouble simulating the amplitude of the
seasonal cycle of precipitation in the western U.S. (Figs. S2–S5),
a problem also noted in the previous generation of models (2).
The CMIP3 models do not capture the sharp rain shadow of the
Olympic and Cascade mountains, instead smearing the peak
precipitation values out over a much wider region than observed.
This error is likely related to horizontal resolution and is reduced
as model resolution increases (22).

Another poorly simulated field is low-frequency temperature
variability in spring (MAM). The models more systematically
underestimate the strength of the temperature variability as the
averaging period increases from 1 to 5 to 10 years. We also find
that precipitation tends to have better skill scores than temper-
ature. In this region at least, the common perception that the
global models do a better job simulating temperature than
precipitation does not seem to be borne out, with the exception
of the amplitude of the annual harmonic of precipitation.
However, this finding may be influenced by our choice of
normalization in forming the skill scores, and uncertainties in
observed pr are likely higher than in tas and are not accounted
for in the metrics.

In evaluating the model temperature trends, we use most of
the formal, fingerprint-based D&A methodology used in B08
and described more fully in ref. 7. However, no downscaling is
done because of the resources that would be required to down-
scale all 21 models. Instead, observations and model fields are
interpolated onto a common 1 o�1 o grid. Also, we reuse the 2
control runs from B08 (the PCM and CCSM3-FV models) to
estimate natural internal climate variability, because we are
focusing on the climate change signal rather than the natural
internal variability noise. These control runs were shown to be
in reasonable accord with observations in their amplitude of
ENSO and the PDO, the annual and pentadal variability of
regional snow cover, and variability in large-scale precipitation
minus evaporation as inferred from downscaled runoff (6, 7).

Briefly, a single spatial fingerprint of warming was defined as
the leading empirical orthogonal function of the model-
averaged-temperature time series over 9 mountainous regions in
the western U.S. (Fig. S1). Year by year, the dot product of the
regional temperatures from each model (and the observations)
and the fingerprint was computed, yielding a time series of dot
products. Our evaluation is based on the least-squares best fit
linear trend of the dot product time series, which is simply
referred to as the ‘‘trend’’ below. This approach differs from a
simple regional averaged temperature trend by assigning weights
to each region depending on how much it participates in the
model-estimated warming signal.

Results
The models produce temperature trends in the western U.S.
ranging from �0.05 to �0.21 °C/decade. The observed trend is
�0.10 °C/decade. All 5 models with a negative trend have only
1 realization, whereas none of the 13 models with more than 1
realization has a negative ensemble-averaged trend. Because of
the importance of natural variability in a limited domain, it is not
uncommon for models with a strongly positive ensemble-
averaged trend to have individual realizations with a negative

8442 � www.pnas.org�cgi�doi�10.1073�pnas.0900094106 Pierce et al.
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trend. A single model realization does not provide a reliable
estimate of the warming signal.

The relationship between N (the number of realizations from
a single model included in the ensemble average) and the
significance of the model’s ensemble-averaged trend is shown in
Fig. 1. Significance is assessed by comparing the ensemble-
averaged trend with the distribution of trends found in the
control runs, which do not include anthropogenic forcing. The
significance is computed with all possible combinations of
realizations for any given N. [For example, if a model has 4
realizations, 3 estimates of significance for n � 3 were computed:
the average of runs (1, 2, 3), (1, 2, 4), and (2, 3, 4)]. All but 1
model show an upward trend in significance as the number of
realizations increases because of the averaging away of natural
internal variability. The results from some models suggest their
trends would be significant if more realizations were available to
reduce the noise (for example, csiro-mk3.0). At least 1 model,
mri-cgcm2.3.2a, shows no detectable trend and scant evidence
one would be detectable even if more realizations were available.

To explore this result further, we calculate what the D&A results
of B08 might have been if the 14 realizations used there had been
chosen randomly from all of the models available (63 realizations
total), rather than the 10 miroc-3.2 (medres) and 4 ncar-pcm1
realizations actually used. Using 10,000 random selections of 14
realizations, we found 96% of the random trials resulted in a trend
significant at the 90% level, and 90% of the trials gave a trend
significant at the 95% level. Therefore, the finding of B08 and ref.
8 that the JFM tasmin trend over the western U.S. is both detectable
(against the background of natural internal climate variability) and
attributable to combined anthropogenic and natural effects is
robust to the range of temperature trends found in the CMIP3
models.

The Role of Model Quality. Although choosing models randomly
verifies the results in B08, it seems we should be able to do better.
It is more appealing to use models that do a good job simulating
climate in the region of interest. Does doing this make any
difference to the results of our D&A study?

We order the models in terms of quality by considering each
model’s skill scores to be a point in nmetrics dimensional space,
where nmetrics � 42. In the results shown here, the ordering is
given by �SS, the Euclidian distance from the model’s point to
perfect skill at point (1, 1, 1, . . . , 1). Lower values of �SS indicate
better matches to observations. A similar distance-based quality
measure has been used before (4), although other workers have
determined overall model quality by ranking the models in each
metric, then averaging the ranks across the different metrics
(12). We emphasize �SS because it allows metrics with a wide

spread of skill to have a larger impact on relative model quality
than metrics with a small spread. Models can change their
position in the ordering by up to 5 places depending on which
method is used. However, we also tried the averaged-rank
method and found it did not affect our conclusions.

Fig. 2A shows how the magnitude of the JFM tasmin trend
relates to �SS. This value has been calculated using only the 13
models that have more than 1 realization with tasmin, to reduce
the effects of natural internal variability. There is no statistically
significant relationship between this measure of model quality
and the regional tasmin trend. Fig. 2 B–D show similar results
calculated with the �s from the individual skill score compo-
nents (the pattern correlation squared, conditional bias, and
mean error). Again, there are no significant relationships. We
repeated the analysis including models with only 1 ensemble
member and again found no statistically significant relationships.

These results are with individual models, but perhaps averaging
across models is required for any relationships to be discerned.
Accordingly, we separated the models into groups of the top 10 and
bottom 11 based on �SS and computed the mean JFM tasmin trend
for each group. The difference in trend between the groups was
compared with Monte Carlo estimates of the difference using
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Fig. 1. Statistical significance of the model JFM Tmin trend in the western U.S. (projected onto the anthropogenic fingerprint) as a function of the number
of ensemble members included in the ensemble averaging. If the number of combinations of ensemble members for the indicated number of ensembles is 4 or
more, whisker plots display the minimum value, 25th, 50th, and 75th percentiles, and the maximum value; otherwise, x’s indicate the individual values and dots
indicate the mean value.
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Fig. 2. Scatterplots between various measures of model quality (x axis) and
JFM tasmin trend (C/yr; y axis). (A) Using � calculated from the skill score (Fig.
S2) as the measure of model quality. (B–D) Using � from the correlation-
squared (Fig. S3), conditional bias (Fig. S4), and unconditional bias (Fig. S5),
respectively. (A–D) Lower � means better agreement with observations.
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models partitioned randomly, rather than on the basis of model
quality. We found no statistically significant difference in the
distribution of trends obtained when partitioning by model quality
compared with random partitioning.

In summary, models can be selected for use in regional climate
change studies based on the quality of their climate simulation
in the region of interest. However, in our demonstration appli-
cation this selection makes no systematic difference to the D&A
results.

The Multimodel Ensemble. The multimodel ensemble average
(MM) is the first, second, first, and third best model in the overall
skill score, correlation-squared, conditional bias, and mean error
terms, respectively. The superiority of MM has been found in
previous climate and numerical weather prediction studies (10–
14), which have generally examined the mean climate rather than

variability. These works attribute the majority of this effect to the
averaging removing ‘‘random’’ errors between the models, but
typically have shown little evidence supporting this. We now
examine whether our results support this mechanism.

Given the important role ensemble size plays in D&A studies
(Fig. 1), is MM better simply because it includes information from
far more realizations than any individual model? Fig. 3 shows �SS
as progressively more realizations from the same model (blue) or
randomly selected different models (red) are added to the ensemble
average. (For both symbols, the case for n � 1 includes only
realizations from the model indicated in the title; other details are
given in SI Text.) For most models, skill increases (�SS decreases)
more quickly when different models are added to the mix than when
more realizations of the same model are included. (The exception
is cccma-cgcm3.1, the model with smallest �SS.) This holds true
even when the number of ensemble members is the same in the
same-model vs. multiple-model case. Therefore, the improved
performance of MM in simulating western U.S. climate does
not arise simply because of a larger number of realizations in
the multimodel average. Rather, incorporating information
from different models contributes to the increase in skill. A
similar conclusion was reached when examining global medi-
um-range weather forecasts (19).

Fig. 3 also shows that �SS values tend to approach an asymp-
tote after approximately 5 different models have been averaged
together. This behavior suggests that stable results in D&A
studies could be reached with far fewer than the 21 models used
here.

More insight into how MM reduces overall errors is gained by
considering the RMSE plots. Fig. 4A displays an example for the
ENSO pattern in sea surface temperatures. Two features stand
out: (i) on the mean error (m� � o�) axis, errors tend to be
distributed around 0; and (ii) on the pattern error y axis, MM
tends to have less error than any individual model.

For the mean error, these results show that averaging across
models increases skill because the errors across different
models tend to be offsetting, which supports the line of
argument in ref. 11.

The situation is less clear for the pattern error because MM
tends to fall below (have less error than) the other model results,
rather than falling in the center of the model cloud of points. We
can write the pattern error as ep � so(1 � �2 � 2 �rm,o)1/2, where
� � sm/so (cf. 20). For any particular metric, so (the standard
deviation of the observations) is fixed, so ep depends only on �
(the ratio of model to observed standard deviation) and rm,o (the
pattern correlation). The model values in � - r space are shown
in Fig. 4B. MM falls in the middle of the distribution of individual
model points on the � axis; i.e., the errors in the ratio of model
standard deviation to observed standard deviation tend to be
distributed around 1, similar to the distribution of the mean error
around zero. Along the r axis, MM is again better than any
individual model. Because this now is simply the pattern corre-
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Fig. 4. Errors in the individual models and the multimodel ensemble average for one particular metric. (A) Shown is RMSE plot for the ENSO pattern in surface
temperature (ts). (B) Shown is pattern error in ENSO ts (y axis of A) decomposed into � (the ratio of the standard deviation of the model to the observed) and
r (the pattern correlation between the model and observed fields). Contours of the y axis value (the pattern error) from A are also shown on B; there is a minimum
value of 0 located at (1, 1), and all values increase away from this minimum.
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lation between the model and observed fields, we suggest this
behavior is caused by effectively random spatial errors in the
model patterns, which again tend to average to 0. Examination
of various fields, such as the ENSO pattern of surface temper-
atures, bears this out.

In summary, the MM tends to perform better than any
individual model, but not because of the greater number of
realizations in MM. Rather, it can be understood by decompos-
ing the model errors into components arising from the mean
error, an error in the ratio of the model’s variance to observed,
and the pattern correlation between the model and observed.
Mean errors tend to be distributed around 0, and the variance
ratio tends to be distributed around 1. Averaging across models
reduces the error in both these aspects, both in the mean climate
and when variability is considered. For the pattern correlation,
averaging across models tends to give better correlation with
observations than any individual model, which is consistent with
the argument that effectively random spatial errors are being
reduced by averaging. An analysis of cloud data concluded that
the spatial smoothing effect of multimodel averaging also had
some beneficial effect, although less than the averaging away of
model errors (14).

The MM is formed with all models weighted equally. As an
experiment, we repeatedly used a minimization procedure
(with perturbed initial guesses) to find different sets of model
weights that resulted in improved MM skill. Although we found
many sets of weights with better skill, even when using
cross-validation approaches to minimize ‘‘curve fitting,’’ indi-
vidual model weights were not consistent between different
sets of weights. We conclude that optimizing MM skill in this
way is not robust.

Is MM always the best choice, even for small subsets of
metrics? Using randomly selected subsets of 2 to 41 metrics, we
find that MM is most likely to be the best choice for 3 or more
metrics (Fig. S6). For 8 or more metrics, MM has 	45% chance
of being the best choice, far exceeding the likelihood of any
individual model.

Our results show the best way we currently have to use
information from multiple global model runs in a regional
detection and attribution study is simply to form the MM.
Neither selecting the models based on the quality of their climate
simulations in the region of interest nor forming an optimized
ensemble average based on maximizing skill resulted in a
superior result over the historical period. Accordingly, we re-
peated our demonstration test case of JFM tasmin D&A by using
MM instead of just the 2 global models used in B08. We find both
detection and attribution of an anthropogenic climate change
signal in western U.S. temperatures are achieved and statistically
significant at the 99% level, even with only 40 years of data used
here (vs. 50 years in B08).

Future Projections Based On Model Quality. We have focused on the
historical period because D&A studies require observations. A
related question is whether future climate projections in our
region of interest are a function of model quality. It has been
found that precipitation projections over the western U.S. have
no relationship to model quality, but that models with less error
over the historical period predict warmer future temperatures
than models with more error (2). Examination of a more limited
domain, California alone, has found little relationship between
the mean or spread of temperature projections and model
quality metrics (3, 4).

We computed the multimodel mean annual tas over the
western U.S. for all of the models, as well as for the 10 best
(least �SS) and 11 worst (greatest �SS) models using our 42
metrics and the Special Report on Emissions Scenarios
(SRES) A1B emissions scenario. The best and worst model
means are statistically indistinguishable before the 2080s, but

after that the better models predict 
1 °C more warming
(2.5 °C for the worst models vs. 3.5 °C for the best models).

A Monte Carlo test shows that ordering the models by quality
also has the effect of ordering them by climate sensitivity more
than would be expected by chance (P � 0.05), with the better
models having higher climate sensitivity. Correlations between
model quality and climate sensitivity are between 0.53 and 0.58
(P � 0.05), depending on which model quality (distance- or
rank-based) and climate sensitivity (transient or equilibrium)
measures are used.

Discussion
The availability of global climate model data generated for the
IPCC AR4 report has led to an increasing number of studies that
downscale global model results to examine regional impacts. This
work has examined how to pick the global models to be used in
a regional climate change D&A study by using as a test case JFM
Tmin warming over the western U.S. (5).

It may be appealing to select global models based on the
quality of their simulation in the region of interest. However, our
results show this does not result in systematically different
conclusions than obtained by picking models randomly. This
finding suggests there is little relationship between (i) the quality
of the model-simulated physics that determines regional tem-
perature and precipitation, and (ii) the quality of the physics that
determines the anthropogenic climate change signal. The lack of
a direct connection between the physics might not be surprising,
but the lack of connection between the model quality of the two
is disconcerting.

What guidance, then, can be given for selecting which global
model runs to use for a regional climate study? First, enough
realizations must be chosen to account for the (strong) effects of
the models’ natural internal climate variability. In our test case,
14 realizations were found to be sufficient in the sense that
randomly selected sets of 14 realizations from the pool of all
realizations available was quite likely to have given the same
results as originally obtained.

Second, we consistently found the MM to be superior to any
individual model, even on estimates of variability, and for as few
as 3 metrics. Although MM’s superiority has been found in
previous studies focusing on the mean climate, the reasons for
this have not generally been elucidated. We have shown this is
not simply caused by the larger number of realizations included
in MM. Rather, it is caused by a tendency for the models to be
distributed about a mean error of 0 and a mean ratio of model
standard deviation to observed standard deviation of 1. We also
find a tendency for the pattern correlation between MM and the
observations to be higher than for most individual models.
Averaging across models therefore tends to reduce all these
errors. In our test case, model skill tended to asymptote after
including approximately 5 different models, which suggests that
stable hindcasts (and forecasts) can be obtained by including a
manageably small group of models.

Our test case showed D&A results significant at the 99% level
using MM. This result is as strong as found in the original work
(5), yet using only 40 years of data instead of 50. Using an
error-minimization procedure to weight the models that go into
making MM can enhance overall skill, but is not robust. Also, the
future climate projections of the top 10 models show 
1 °C more
warming over the western U.S. during this century than the
bottom 11 models, although the differences are not distinguish-
able until after 2080. This result agrees with results using an
earlier generation of models (2), although analysis over a smaller
domain found that model quality had little effect on the models’
projections (3, 4).

Finally, a D&A study involves comparing the climate change
signal with the estimate of natural internal variability noise. This
work has not assessed the impact of a poor noise estimate on the
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results. Instead we have focused on the signal, reusing an existing
noise estimate that was shown to be realistic (5). Choosing a
realistic noise estimate is relatively straightforward because it
can be done by directly comparing the model results with
observations. In contrast, a model’s signal cannot be verified
against the observations before using that model in a D&A study
because that would be circular reasoning. There is no doubt,
though, that a poor noise estimate can give misleading D&A
results, and selection of a proper noise estimate is an integral
part of any D&A study.

Supporting Information. Further information, including Figs. S7
and S8, is available in SI.
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